Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Genom Precis Med ; 16(4): 317-327, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37409478

RESUMO

BACKGROUND: With genetic testing advancements, the burden of incidentally identified cardiac disease-associated gene variants is rising. These variants may carry a risk of sudden cardiac death, highlighting the need for accurate diagnostic interpretation. We sought to identify pathogenic hotspots in sudden cardiac death-associated genes using amino acid-level signal-to-noise (S:N) analysis and develop a web-based precision medicine tool, DiscoVari, to improve variant evaluation. METHODS: The minor allele frequency of putatively pathogenic variants was derived from cohort-based cardiomyopathy and channelopathy studies in the literature. We normalized disease-associated minor allele frequencies to rare variants in an ostensibly healthy population (Genome Aggregation Database) to calculate amino acid-level S:N. Amino acids with S:N above the gene-specific threshold were defined as hotspots. DiscoVari was built using JavaScript ES6 and using open-source JavaScript library ReactJS, web development framework Next.js, and JavaScript runtime NodeJS. We validated the ability of DiscoVari to identify pathogenic variants using variants from ClinVar and individuals clinically evaluated at the Duke University Hospitals with cardiac genetic testing. RESULTS: We developed DiscoVari as an internet-based tool for S:N-based variant hotspots. Upon validation, a higher proportion of ClinVar likely pathogenic/pathogenic variants localized to DiscoVari hotspots (43.1%) than likely benign/benign variants (17.8%; P<0.0001). Further, 75.3% of ClinVar variants reclassified to likely pathogenic/pathogenic were in hotspots, compared with 41.3% of those reclassified as variants of uncertain significance (P<0.0001) and 23.4% of those reclassified as likely benign/benign (P<0.0001). Of the clinical cohort variants, 73.1% of likely pathogenic/pathogenic were in hotspots, compared with 0.0% of likely benign/benign (P<0.01). CONCLUSIONS: DiscoVari reliably identifies disease-susceptible amino acid residues to evaluate variants by searching amino acid-specific S:N ratios.


Assuntos
Cardiomiopatias , Canalopatias , Humanos , Variação Genética , Canalopatias/genética , Medicina de Precisão , Virulência , Cardiomiopatias/genética , Morte Súbita Cardíaca/patologia , Aminoácidos
2.
J Orthop Res ; 39(11): 2455-2464, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33470467

RESUMO

Antibiotic-loaded chitosan pastes have shown advantages in the treatment and coverage of complex musculoskeletal defects. We added mannitol, previously shown to increase antibiotic susceptibility of biofilm, to an injectable chitosan/polyethylene glycol paste for delivery of antibiotics. Ground sponges (0.85% acetic acid solution, 1% chitosan, 0% or 2% mannitol, 1% polyethylene glycol) were hydrated using phosphate-buffered saline with 10 mg/ml amikacin and 10 mg/ml vancomycin added to form pastes. We inoculated rabbit radial defects with 105 colony-forming units of Staphylococcus aureus (UAMS-1) and inserted titanium pins into the cortical bone. Groups compared included mannitol blend pastes, non-mannitol blends, antibiotic-loaded bone cement, vancomycin powder, and no treatment controls. We harvested tissue samples and retrieved the pins retrieved at 3 weeks. All antibiotic-loaded groups lowered bacterial growth and colony-forming unit counts in soft and bone tissue and on titanium pins in in vivo studies. The results indicate this biomaterial is capable of eluting active antibiotics at concentrations that reduce bacterial growth on biomaterials and tissue, which, in turn, may prevent biofilm formation. Blends of chitosan and mannitol may be useful in prevention and treatment of osteomyelitis and implant-associated infections.


Assuntos
Quitosana , Osteomielite , Infecções Estafilocócicas , Animais , Antibacterianos/uso terapêutico , Materiais Biocompatíveis , Manitol , Osteomielite/tratamento farmacológico , Osteomielite/microbiologia , Osteomielite/prevenção & controle , Polietilenoglicóis , Coelhos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/prevenção & controle , Titânio , Vancomicina
3.
Mar Drugs ; 17(9)2019 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-31480687

RESUMO

Mannitol, a polyalcohol bacterial metabolite, has been shown to activate dormant persister cells within bacterial biofilm. This study sought to evaluate an injectable blend of mannitol, chitosan, and polyethylene glycol for delivery of antibiotics and mannitol for eradication of Staphylococcal biofilm. Mannitol blends were injectable and had decreased dissociation and degradation in the enzyme lysozyme compared to blends without mannitol. Vancomycin and amikacin eluted in a burst response, with active concentrations extended to seven days compared to five days for blends without mannitol. Mannitol eluted from the paste in a burst the first day and continued through Day 4. Eluates from the mannitol pastes with and without antibiotics decreased viability of established S. aureus biofilm by up to 95.5% compared to blends without mannitol, which only decreased biofilm when loaded with antibiotics. Cytocompatibility tests indicated no adverse effects on viability of fibroblasts. In vivo evaluation of inflammatory response revealed mannitol blends scored within the 2-4 range at Week 1 (2.6 ± 1.1) and at Week 4 (3.0 ± 0.8), indicative of moderate inflammation and comparable to non-mannitol pastes (p = 0.065). Clinically, this paste could be loaded with clinician-selected antibiotics and used as an adjunctive therapy for musculoskeletal infection prevention and treatment.


Assuntos
Antibacterianos/química , Quitosana/química , Manitol/química , Amicacina/química , Antibacterianos/farmacologia , Biofilmes/efeitos dos fármacos , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Inflamação/tratamento farmacológico , Testes de Sensibilidade Microbiana/métodos , Polietilenoglicóis/química , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/química , Vancomicina/farmacologia
4.
J Funct Biomater ; 9(4)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322006

RESUMO

Complex open musculoskeletal wounds are a leading cause of morbidity worldwide, partially due to a high risk of bacterial contamination. Local delivery systems may be used as adjunctive therapies to prevent infection, but they may be nondegradable, possess inadequate wound coverage, or migrate from the wound site. To address this issue, a thermo-responsive, injectable chitosan paste was fabricated by incorporating beta-glycerophosphate. The efficacy of thermo-paste as an adjunctive infection prevention tool was evaluated in terms of cytocompatibility, degradation, antibacterial, injectability, and inflammation properties. In vitro studies demonstrated thermo-paste may be loaded with amikacin and vancomycin and release inhibitory levels for at least 3 days. Further, approximately 60% of thermo-paste was enzymatically degraded within 7 days in vitro. The viability of cells exposed to thermo-paste exceeded ISO 10993-5 standards with approximately 73% relative viability of a control chitosan sponge. The ejection force of thermo-paste, approximately 20 N, was lower than previously studied paste formulations and within relevant clinical ejection force ranges. An in vivo murine biocompatibility study demonstrated that thermo-paste induced minimal inflammation after implantation for 7 days, similar to previously developed chitosan pastes. Results from these preliminary preclinical studies indicate that thermo-paste shows promise for further development as an antibiotic delivery system for infection prevention.

5.
J Funct Biomater ; 9(4)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30248929

RESUMO

Bone void fillers (BVFs) containing calcium sulfate, tricalcium phosphate (TCP), and hydroxyapatite can be loaded with antibiotics for infection treatment or prevention under surgeon-directed use. The aim of this study was to characterize the handling and elution properties of a triphasic BVF loaded with common antibiotics. BVF was mixed with vancomycin and/or tobramycin to form pellets, and the set time was recorded. A partial refreshment elution study was conducted with time points at 4, 8, and 24 h, as well as 2, 7, 14, 28, and 42 days. Effects on dissolution were evaluated in a 14-day dissolution study. Set time increased to over 1 h for groups containing tobramycin, although vancomycin had a minimal effect. Pellets continued to elute antibiotics throughout the 42-day elution study, suggesting efficacy for the treatment or prevention of orthopedic infections. BVF containing vancomycin or tobramycin showed similar dissolution at 14 days compared to BVF without antibiotics; however, BVF containing both antibiotics showed significantly more dissolution.

6.
Int J Biol Macromol ; 104(Pt B): 1407-1414, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28365285

RESUMO

Stimuli-responsive biomaterials offer a unique advantage over traditional local drug delivery systems in that the drug elution rate can be controllably increased to combat developing symptomology or maintain high local elution levels for disease treatment. In this study, superparamagnetic Fe3O4 nanoparticles and the antibiotic vancomycin were loaded into chitosan microbeads cross-linked with varying lengths of polyethylene glycol dimethacrylate. Beads were characterized using degradation, biocompatibility, and elution studies with successive magnetic stimulations at multiple field strengths and frequencies. Thirty-minute magnetic stimulation induced a temporary increase in daily elution rate of up to 45% that was dependent on field strength, field frequency and cross-linker length. Beads degraded by up to 70% after 3 days in accelerated lysozyme degradation tests, but continued to elute antibiotic for up to 8 days. No cytotoxic effects were observed in vitro compared to controls. These promising preliminary results indicate clinical potential for use in stimuli-controlled drug delivery.


Assuntos
Quitosana/química , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Campos Magnéticos , Animais , Quitosana/farmacologia , Portadores de Fármacos/farmacologia , Nanopartículas de Magnetita/química , Teste de Materiais , Camundongos , Células NIH 3T3 , Vancomicina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...